
|  | Kiyofumi Katagiri                     |
|--|---------------------------------------|
|  | Professor                             |
|  | Department of Applied Chemistry       |
|  | Hiroshima University                  |
|  | kktgr@hiroshima-u.ac.jp               |
|  | http://home.hiroshima-u.ac.jp/inumaru |

**Research keywords**: Organic-inorganic hybrid materials, Sol-gel method, Hydrothermal process, Supramolecular assembly, Layer-by-layer assembly, Bioinspired materials, Structurally colored materials, Nanoparticles, Theranostic materials, Photocatalysts, Mixed-anion compounds, Metal oxynitrides, etc.

## Heteropolyacid-based composites for proton conductors

Thermallyandchemicallystablephenylsilsesquioxane(PhSiO\_{3/2})particleswereprepared by sol–gel process, and ultra-thin layersofoppositelychargedpoly(diallyldimethylammonium chloride)(PDDA)anddodecatungstophosphoricacid(WPA)were



alternately deposited on the negative-charged PhSiO<sub>3/2</sub> particles via layer-by-layer (LbL) assembly technique. Hygroscopic property of WPA was remarkably reduced owing to the formation of PDDA/WPA complex. The amount of WPA adsorbed on PhSiO<sub>3/2</sub> particles was estimated to be ~ 0.03 (g/g PhSiO<sub>3/2</sub>). Transparent and monolithic pellet can be obtained from the resultant core– shell particles by pressing. Proton conductivity of WPA-deposited samples increased about 4 orders of magnitude compared with unmodified samples, and reached to about  $10^{-4}$  S/cm at 80 °C and 80% relative humidity [1].

Next, cesium salts of  $Cs_2SO_4$ ,  $Cs_2CO_3$  and  $CsHSO_4$  and WPA were mechanically milled to synthesize chemically durable WPA composites. The X-ray diffraction patterns of composites suggested the formation of partially substituted  $Cs_xH_{3-x}PW_{12}O_{40}$  composites after milling at 720 rpm for 10 min. Proton conductivities under both humidified and dry conditions of the resultant composites markedly improved. The proton conductivities strongly depended on the type of cesium salt. The hydrogen bonding distance *L* in the frame structures of the composites was estimated from the <sup>1</sup>H-isotropic chemical shift. The proton conductivities in dry conditions of WPA·6H<sub>2</sub>O and the composites were strongly represented to *L* [2].

[1] Y. Daiko, K. Katagiri, K. Shimoike, M. Sakai, A. Matsuda, Solid State Ionics, 178, 621 (2007).

[2] Y. Daiko, H. Takagi, K. Katagiri, H. Muto, M. Sakai, A. Matsuda, *Solid State Ionics*, **179**, 1174 (2008).